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Optimization of Monte Carlo calculations of the effective potential

A. Ardekani* and A. G. Williams†

Department of Physics and Mathematical Physics and Special Research Center for the Subatomic Structure of Matter,
University of Adelaide, Adelaide, SA 5005, Australia

~Received 21 May 1997!

We study Monte Carlo calculations of the effective potential for a scalar field theory using three techniques.
In each case we extract the renormalized quantities of the theory. The system studied in our calculations is a
one-componentf4 model in two dimensions. We apply these methods to both the weak and strong coupling
regimes. In the weak coupling regime we compare our results for the renormalized quantities with those
obtained from two-loop lattice perturbation theory. Our results are verified in the strong coupling regime
through comparison with the strong coupling expansion. We conclude that effective potential methods, when
suitably chosen, can be accurate tools in calculations of the renormalized parameters of scalar field theories.
@S1063-651X~98!09801-8#
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I. INTRODUCTION

An understanding of the underlying vacuum structure o
quantum field theory is essential for understanding its ph
cal content. This analysis is conveniently carried out by c
culating a quantity known as the effective potential@1–3#,

denoted byU(f̄) and the minimum of which gives informa
tion as to the nature of the lowest energy eigenstate of

theory. This makesU(f̄) very useful, particularly in studies
of spontaneous symmetry breaking~SSB!. The effective po-
tential determines the one-particle irreducible~1PI! vertices
@1# at zero momenta and reflects any nontrivial dynamics
is also widely used to study radiative corrections in quant
field theories@3#. Truncating the loop expansion of the effe
tive potential often gives it a complex and nonconvex ch
acter, in spite of the fact that on general grounds the effec
potential must be real and of convex character@4#. It has
been pointed out that the loop expansion for the effec
potential fails for the fields in just those regions where
classical potential is nonconvex; the most familiar case c
responds to a double-well potential@5#. Therefore it is im-
portant to carry out nonperturbative studies which can
used even where the loop expansion is not applicable.
convenient nonperturbative approach is to employ a disc
version of the theory, i.e., lattice field theory. Lattice fie
theories have an ultraviolet~UV! regulator~the lattice spac-
ing! and an infrared~IR! cutoff ~the lattice size! and are
conveniently studied using Monte Carlo~MC! methods.

The model used in our study is thelf111
4 model. The

Higgs mechanism is based on a more elaborate versio
such a model and is usually discussed at the tree leve
fully nonperturbative treatment of the Higgs model would
of considerable interest, but is not discussed further h
First, we review the lattice effective potential, showing ho
all of the renormalized vertex functions can be calculate
one knows the full structure of the effective potential. The
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we investigate the calculation of the effective potential
lf4 using two established methods: The variation of sou
method~VSM! @6,7# which introduces an external field suc
that the effective potential can be calculated from the
sponse of the system to this external field; and a version
the constraint effective potential~CEP I! @8# where the effec-
tive potential is calculated from the distribution of the co

strained mean field,f̄. Some suggestions for improvin
these methods are also put to the test. We will show that
standard method of calculating the renormalized coupling
lf4 theory, through calculating two- and four-point correl
tion functions at zero momentum, suffers from large stati
cal errors, especially where the coupling constant is not s
ficiently strong. CEP I also suffers from the same proble
We will show that the VSM can be used to obtain mu
more accurate and precise results for the renormalized ve
functions. In addition to the above two established meth
using the effective potential~VSM and CEP I! we will show
how the renormalized quantities can be calculated from
effective potential by calculating appropriate correlati
functions in the presence of a constraint,f̄ ~we refer to this
method as CEP II!. The procedure does not require any cur
fitting or extrapolation to a zero external field limit, as VS
requires. Also this method does not require the very h
statistics that the CEP I method needs. The computatio
time is also dramatically reduced. However, the drawbac
that its accuracy in the strong coupling regime is limited. W
will point out the advantages and disadvantages of e
method and their accuracy.

Both in numerical MC studies and analytical calculatio
it is important to find the renormalization group trajectori
~RGT!. Along these curves and close to an infrared fix
point ~the scaling region! the physics described by the lattic
regularized quantum field is invariant and only the value
the cutoff ~lattice spacing! is changing. It is in the scaling
region that the ratio of dimensionless renormalized ver
functions is invariant and one expects the scaling region
be in the vicinity of the critical point. However, we perform
our calculations away from the scaling region in order
examine the accuracy of effective potential methods to
6140 © 1998 The American Physical Society
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57 6141OPTIMIZATION OF MONTE CARLO CALCULATIONS OF . . .
fullest extent. Since the correlation length is large in t
scaling region, one expects that the finite size effects ca
considerable. By performing the calculations in a reg
away from the scaling region, where the correlation length
smaller, we have hopefully minimized the finite size effe
on our calculations of renormalized quantities. The other f
tor is that away from the critical point Monte Carlo metho
typically perform well, whereas, near the critical point whe
the correlation length becomes larger, the autocorrela
length rapidly diverges. This well-known phenomenon
sults in critical slowing down and causes some well-kno
complications. Hence, we prefer here to perform our cal
lations away from the critical point. In the weak couplin
regime we compare our results with lattice perturbat
theory results in order to establish the absence of finite
effects in our calculations. In the strong coupling regime
compare the effective potential results with the results
tained from the strong coupling expansion on the lattice,
trapolated to a larger correlation length. The effective pot
tial methods discussed here can be accurate tools for fin
the scaling region, since they can provide accurate values
the dimensionless ratios of renormalized parameters as
become evident. In the case oflf4 the fixed points can be
calculated perturbatively@10#. Nonperturbatively, the param
eter points on the second-order phase transition critical
which separates the two phases,^f&50 and ^f&Þ0, are
good candidates for the IR fixed points~the pointm̂25l̂50
is the trivial fixed point and any scaling region correspond
to this fixed point represents a free field theory!.

In Sec. II we briefly summarize the model to be studie
In Sec. III we review the above methods of calculation of t
effective potential. In Sec. IV we perform the calculatio
for both the symmetric and the spontaneous symmetry br
ing cases in the weak coupling regime and we compare
results with those obtained from lattice perturbation theo
We also perform calculations in the strong coupling regi
and compare these with the strong coupling expansion.

II. THE lf4 MODEL

We start with the action of a single componentlf4

theory ind dimensions in Euclidean space in the presence
a sourceJ ~in units where\5c51!,

S@f,J#5E ddx
1

2
~]mf!21

1

2
m2f21

l

4!
f42Jf.

A discrete lattice version of the action can be written as

S@f̂,Ĵ#5F1

2 (
n,m

~f̂n,m2f̂n!21
1

2 (
n

m̂2f̂n
21(

n

l̂

4!
f̂n

4

2(
n

Ĵnf̂nG , ~1!

where we have defined the dimensionless quanti
f̂[a(d/2)21f, m̂[ma, andl̂[la42d and Ĵ[a(d/2)11J. In
additionn[(n1 , . . . ,nd) is a d-dimensional vector labeling
the lattice sites andm is a unit vector in the temporal o
spatial direction. The sum overm is over thed Euclidean
directions. We also have denoted the field on the neighbo
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site of n in the direction ofm by f̂n,m . Henceforth we drop
the hat from the dimensionless field variables and sources
brevity unless it is necessary to avoid confusion. We a
impose the appropriate periodic boundary condition
fields:

fn1N̂m
5fn for all m, ~2!

where N̂m5(0, . . . ,Nm , . . . ,0), is a d-dimensional vector
with Nm being the number of lattice sites in the directionm.

Thef4 theory is known to exist in two phases, one whe
the reflection symmetryf→2f is spontaneously broken
and the other where it is not. The symmetric phase w
^f&50 is separated from the broken symmetry phase w

^f&Þ0 by a line of second-order phase transitions wherem̂

and l̂ assume the critical valuesm̂c and l̂c .
For the actionS@f# on the lattice the generating func

tional for the correlation functions is defined as

Z@J#5
*@df#e2S@f,J#

*@df#e2S@f# , ~3!

such thatZ@0#51. FromZ@J# one can define the connecte
Green functions as

G~n1 , . . . ,nj !c5
]

]Jn1

•••
]

]Jnj

W@J#uJ50 , ~4!

where

W@J#5 ln Z@J#. ~5!

III. THE LATTICE EFFECTIVE POTENTIAL

Consider a lattice Lagrangian density on ad-dimensional
cubic lattice with the total number of lattice sitesNd,

Ln5(
m

1

2
~fn,m2fn!21V~fn!. ~6!

The classical vacuum~ground state! is at the minimum of
V(f). The vacuum expectation value^f& of the quantum
field is not necessarily identical to the classical vacuum. T
vacuum expectation value of the field in the presence of
external source,J(x), is given by

fcn@J#[
]W@J#

]Jn
. ~7!

The vacuum expectation valuêf& is the limit of fcn as
J→0. Hence we can ask for what value ofJ can one obtain
a givenfc . One can choose to treatfc as the independen
variable instead ofJ and define the ‘‘effective action’’
G@fc# by a Legendre transformation:

G@fc#5(
n

fcnJn2W@J#, ~8!

wherefc is defined in Eq.~7!. It is easy to verify that
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6142 57A. ARDEKANI AND A. G. WILLIAMS
Jn@fc#[
]G@fc#

]fcn
. ~9!

In the caseJ50, by translational invariance it follows tha
fc must become constant~i.e., independent of the labeln!.
Hence the vacuum expectation value is given by^f& and
satisfies

dG@fc#

dfc
U

fc5^f&

50. ~10!

Similarly for any constantJ we must havefc5f̄ also con-
stant. Define the effective potentialU(f̄) by

G@f̄#5NdU~f̄ !. ~11!

The Fourier trasform on a finite, discrete lattice is defined

f̃k[(
n

e2p in.k̂/Nfn , ~12!

where k̂[ k̂1 , . . . ,k̂d is a d-dimensional vector with
(2N/2), k̂n<N/2 ~we assumeN is even from this point!
and wheren• k̂[n1k̂11•••1ndk̂d . The coordinate-spac
and momentum-spaced functions are

dm,n5
1

Nd (
k̂

e22p i ~n2m!k̂/N, d k̂,q̂5
1

Nd (
n

e22p i ~ k̂2q̂!n/N,

~13!

respectively. The inverse Fourier transform is

fn5
1

Nd (
k̂

e22p ink̂/Nf̃ k̂ .

Note that we have used the asymmetric normalization of
Fourier transform and its inverse as is usual in the fi
theory in the continuum. The effective action is the genera
of proper ~i.e., one-particle irreducible! Green’s functions
and in particular we can Taylor expand the effective action
give

G@fc#5 (
M50

`
1

M ! (
n1 , . . . ,nM

G~M !~n1 , . . . ,nM !fcn1
•••fcnM

.

~14!

HereG (M )(n1 , . . . ,nM) are the properM -point Green func-
tions in the presence of the sourceJn ,

]MG@f#

]fcn1
•••]fcnM

5G~M !~n1 , . . . ,nM !. ~15!

In terms of its Fourier transforms we have

G@fc#5 (
M50

`
1

M !

1

NMd (
k̂1 , . . . ,k̂M

3G̃~M !~ k̂1 , . . . ,k̂M !f̃2 k̂1
•••f̃2 k̂M

, ~16!

where heref̃ is the Fourier transform offc .
y

e
d
r

o

The vacuum proper Green functions are obtained by
ting J50. If the source is a constant~Jn5J for all n!, then
the translational invariance is restored and we can factor
an overall normalization and ad function to define

G̃~M !~ k̂1 , . . . ,k̂M ![Ndd0,k̂11•••1 k̂M
G̃c

~M !~ k̂1 , . . . ,k̂M !,
~17!

where in the limit J→0 we recognize that

G̃c
(M )( k̂1 , . . . ,k̂M) is the dimensionless, lattice equivalent

the properM -point Green function in momentum space. F
constantJ we also havefcn→f̄ and hencef̃5Ndd k̂,0f̄ and
Eq. ~16! gives

G~f̄!5Nd (
M50

1

M !
G̃c

~M !~0!f̄M, ~18!

where

G̃c
~M !~0![G̃c

~M !~0, . . . ,0!. ~19!

Comparing Eq.~11! with Eq. ~16! gives

U~f̄ !5 (
M50

`
1

M !
G̃c

~M !~0!f̄M. ~20!

It immediately follows that

dMU~f̄ !

df̄M
U

f̄5^f&50

5G̃c
~M !~0!, ~21!

where here it is understood that we are working in the
broken symmetry sector,^f&50. In the unbroken sector we
see from Eq.~20! that the dimensionless, proper Green fun
tions with vanishing momenta can be easily obtained fr
the effective potentialU(f) by differentiation. We see tha
f̄ minimizesU(f̄) and in the limitJ→0 the minimumf̄
→^f&. Also note that Eq.~9! gives an expansion ofJ in
terms of thef̄ ’s andG~0!’s,

J~f̄ !5Nd (
M51

`
1

~M21!!
G̃c

~M !~0!f̄M21. ~22!

In the broken symmetry sector,^f&Þ0, it is more appropri-
ate to use the shifted field

x~x![f~x!2^f&. ~23!

The one-particle irreducible vertex functionsG (s)
(M ) are linear

combination of theG (M )’s, and can be obtained from th
shifted version of Eq.~20!,

U~f̄ ![U ~s!~ x̄ !5U ~s!~ f̄2^f&!

5 (
M50

`
@f̄2^f&#M

M !
G̃~s!

~M !~0!. ~24!

As is usually done in lattice field theory studies we ren
malize at the renormalization point where all external m
menta of the Green functions vanish. The renormaliz
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quantities can be obtained directly from the effective pot
tial. For example, in thelf4 theory we have

dU~f̄ !

df̄
U

f̄5^f&

50, ~25!

Z
d2U~f̄ !

d2f̄
U

f̄5^f&

5ZG̃c
~2!~0!5G̃r

~2!5m̂r
2, ~26!

Z2
d4U~f̄ !

d4f̄
U

f̄5^f&

5Z2G̃c
~4!~0!5G̃r

~4!5l̂ r , ~27!

whereZ is the field wave function renormalization consta
(f r5AZf). From the first two conditions above and requ
ing m̂r

2>0 it follows that ^f& is at the minimum ofU(f̄).

Also note thatm̂r andl̂ r defined as above are not the phy
cal mass and coupling, which are defined in the pole of
propagator in the complex energy plane and the on s
four-point function, respectively. However, in the scaling r
gion ~close to the critical line! these values are a good a
proximation to the physical mass and coupling@9#.

IV. THE MC EFFECTIVE POTENTIAL

In this section we will examine three MC methods f
calculation of the lattice effective potential. The renomaliz
coupling constants obtained by these methods are comp
with analytical results. From this point on we work excl
sively in two dimensions (d52).

A. The variation of source method

Equation~22! suggests that in the Monte Carlo calculati
one can calculate the mean value of the fields,f̄, for differ-
ent values of the source and as a result one obtainsf̄ as a
function ofJ. This function can then be inverted to obtainJ

as a function off̄, i.e., J(f̄). Then using Eq.~22! we see
that the derivatives ofJ with respect tof̄ would give the
proper Green functions at zero momentum. From Eq.~7! one
also concludes thatf̄J is antisymmetric inJ. That is,

f̄J52f̄2J . ~28!

Figure 1 showsJ(f̄) as a function off̄ for the symmetric
case@Fig. 1~a!# and the broken symmetry case@Fig. 1~b!#.
Note that for the broken symmetry case,f̄J as a function of
J is discontinuous and so the relation in Eq.~22! cannot be
inverted for allf̄(J). Whenever it is possible Eq.~22! has to
be inverted to obtain the sourceJ as a function off̄. Then
the derivatives ofJ with respect tof̄ would give the vertex
functions at zero momenta and consequently the renorm
ized masses and couplings can be calculated.

The mean value of the field in the presence of a sou
has a small statistical error. This is expected since it is
analog to the reduction of fluctuations of a spin system in
presence of an external magnetic field. As the source
-

t

e
ll

-

d
red

l-

e
n
e
e-

comes smaller the fluctuations become larger. Thus
needs to perform the calculations for large enough sou
that the error is small and then extrapolate the results
J50.

This method will be referred to as the variation of sour
method and has a number of advantages. The vacuum ex
tation values of the fieldf̄(J) are the simplest quantities t
compute on the lattice and theirJ dependence can be ex
ploited to get the first derivative of the effective potentia
Since the source effectively causes the boson field to bec
more massive, the finite size effects generated by the la
become exponentially small provided that the lattice is la
enough. Since the data become noisy for small values oJ
we need to restrict the analysis to a safe region ofJ, which
can introduce some errors in the results through uncertain
in the extrapolation.

B. The constraint effective potential„CEP I…

In the preceding section the effective action and the eff
tive potentialU(f̄) were defined through the introduction o
a sourceJ. There is a different method which does not r
quire such a dynamical symmetry breaking source. The c
straint effective potential was introduced by Fukuta a
Kyrikopoulos @8# as an alternative way of obtaining the e
plicit expression for the effective potential. It was furth
analyzed by O’Raifeartaigh, Wipf, and Yoneyama@11#. In
this approach one obtains an explicit expression for the
fective potential, without introducing external sources, b
instead through the introduction of ad function in the func-
tional integral. In the constraint effective potential approa
one first definesŨ(f̄)[U(N2,f̄) as

e2N2Ũ~f̄ !5E @df#dS 1

N2 (
n

fn2f̄ D e2S@f# ~29!

and then uses the fact that asN2→` we have Ũ(f̄)
→U(f̄) and the effective potential is recovered.

It is easiest to demonstrate this result in Minkowski spa
where Eq.~29! becomes

e2 iN2Ũ~f̄ !5E @df#dS 1

N2 (
n

fn2f̄ D eiS@f#. ~30!

FIG. 1. Examples ofJ(f̄) versusf̄ in the symmetric sector~a!
and for the broken symmetry sector~b!. The stars~* ! correspond to

the values off̄ at J50. For these resultsN520.
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We can replace thed function in Eq. ~30! by its integral
representation to obtain~up to an irrelevant constant!

e2 iN2Ũ~f̄!5CE dJE @df#ei *dx@L1Jf#2 iN2f̄J

5C8E dJei ~W@J#2N2Jf̄!. ~31!

Note that in the integrand of Eq.~31! we havef̄ fixed andJ
arbitrary. In the limitN2→` the dominate contribution to
the integral comes from the stationary point of the integ
which is the value ofJ at whichdW@J#/dJ5f̄. Recall that
G(f̄)5(Jf̄2W@J#)uf̄5dW@J#/dJ , from which we see that up
to an irrelevant overall constant

e2 iN2Ũ~f̄!→e2 iG~f̄!5e2 iN2U~f̄! as N2→`, ~32!

as claimed.
We can also arrive at this result directly in Euclide

space by multiplying both sides of Eq.~29! by eN2Jf̄ with J

arbitrary and then integrating overf̄ to obtain

E df̄e2N2@Ũ~f̄!2Jf̄#5E @df#e2S@f#1J(nfn. ~33!

As N2→` the left hand side of Eq.~33! becomes entirely
dominated by the stationary point of the one-dimensionaf̄

integration given bydŨ(f̄)/df̄5J, while the right hand
side is recognized aseW@J# for a constant source,J. Hence up
to an irrelevant overall constant we find

e2N2@Ũ~f̄!2Jf̄#→eW@J# as N2→`, ~34!

and so find that~up to a constant!

e2N2Ũ~f̄!→eW@J#2N2Jf̄5e2N2U~f̄! as N2→`, ~35!

as required.
It is important to note that thee2N2Ũ(f̄) relates to similar

definitions in statistical mechanics and spin systems@12# and
that

P~f̄!5
e2N2Ũ~f̄!

*df̄e2N2Ũ~f̄!
~36!

can be interpreted as the probability density for the system
be in a state of ‘‘magnetization,’’f̄. Then it can be seen tha
the probability for a state whose average field is not a m
mum of Ũ(f̄) then decreases asN2→`.

This suggests that one needs to study the probability
tribution of the order parameterf̄. Using a Monte Carlo
algorithm one generates a Boltzmann ensemble of confi
rations,$f%, weighted bye2S@f#. Let dN be the number of
configurations with average field values in an intervaldf̄

aboutf̄. Then

dN~f̄!5Ce2N2Ũ~f̄!df̄, ~37!

with C some constant. Then one can write
l

to

i-

s-

u-

Ũ~f̄!52
1

N2
ln

dN~f̄!

df̄
, ~38!

up to an irrelevant additive constant. Equation~36! suggests
that one can generate a large number of configurati
weighted bye2S@f#, calculatef̄ for each configuration, and
construct a normalized histogram. The histogram can be
ted to Eq.~38!. The most probable average field values a
near the minimum of the effective potential. In order to d
termine Ũ(f̄) away from its minimum, i.e., to sample a
range of relatively improbable values off̄, one can intro-
duce a small source. Then a simple generalization of Eq.~36!
allows a nonzero external source@13#

Ũ~f̄!2Jf̄52
1

N2
ln

dN~f̄!

df̄
. ~39!

Thus one can check whether such an ansatz gives a g
approximation for the effective potential, and so constr
the effective potential by performing a simultaneous fit
several histograms corresponding to different values ofJ. By
the expression ‘‘simultaneous fit,’’ we mean that thex2 val-
ues corresponding to eachJ are summed and this sum is the
minimized. This method can be applied easily on the latti
Note that in Eq.~36! we have assumed that for sufficient
largeN2 the finite volume effects onŨ(f̄) can be neglected,
i.e., that the lattice volume is sufficiently large. The co
straint effective potential method summarized in Eq.~39!
will be referred to as CEP I.

C. The constraint effective potential„CEP II …

Now return to Eq.~29! and perform a shift of field,
f(x)→f(x)1f̄. Since the measure is translationally invar
ant we obtain

e2N2Ũ~f̄!5E @df#dS 1

N2 (
n

fnD e2S@f1f̄#. ~40!

Taking the derivative with respect tof̄ we get

dŨ~f̄!

df̄
e2N2Ũ~f̄!5

1

N2 E @df#dS (fn

N2 D
3

dS~f1f̄!

df̄
e2S@f1f̄#. ~41!

Only the potential part of the action is affected by the shift
field sincef̄ is constant and sodS/df̄5N2dV/df̄. Using
this fact and shifting the field back to its original form the
gives

dŨ~f̄!

df̄
5K dV~f!

df
L

f̄

, ~42!

where we have introduced the shorthand notation
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^O~f!&f̄[~eN2Ũ~f̄ !!E @df#dS 1

N2 (
n

fn2f̄ D
3O~f!e2S@f#. ~43!

In the lf4 theory being considered here we find

dŨ~f̄ !

df̄
5m̂2f̄1

l̂

6
^f3&f̄ . ~44!

Expressions for some of the higher derivatives ofU(f̄) are
given in the Appendix. These equations are very useful in
Monte Carlo calculations since they relate the derivatives
the effective potential~and consequently the zero momentu
vertex function! to the averages of quantities that can
calculated directly from the lattice. This method will be re
ered to as CEP II.

There are two ways of calculating the renormalized qu
tities using CEP II. The first one applies the constraint on
lattice, fixing f̄, then calculateŝf3&, and finally uses Eq
~44! to obtain the first derivative of the effective potentia
Higher derivatives are evaluated from fitting a curve to
dŨ/df̄ versusf̄ results. This has some similarities to th
variation of source method; however, there is a differen
between these two methods. In VSM one sets the sourceJ to
constant and̂ f&5f̄ up to fluctuations due to finiteN2,
whereas in CEP II we havêf&5f̄ exactly by construction.

In the broken symmetry sector there is another differe
between this method and VSM in the broken sector. Wh
using VSM we are not able to obtain any value of^f& in the
region between the two minima, whereas both CEP meth
are suitable for probing this region. One can always fixf̄ to
any value including the values between the two minima
get the full shape ofJ(f̄) ~see Fig. 2!. However, as far as the
practical calculation of renormalized quantities is concern
this method is almost equivalent to VSM and so from h
on we disregard this approach.

The second approach to CEP II is through the equati
shown in the Appendix and is more direct. These equati
relate the derivative of the effective potential to the avera
of some derivatives of the classical potential. All these av
ages should be taken in the presence of the constraint w
fixes ^f&5f̄.

We imposed the constraint using hybrid Monte Carlo. T
constraint can be taken into account by appropriately adj

FIG. 2. An example ofJ(f̄) versusf̄ in the broken sector using
the constraint effective potential. For these resultsN520.
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ing an arbitrarily chosen single site variablefk . Consider an
initial configuration~denotedC! with the field average being
f̄. Each time a site is updated by a valued, that is,

f i85f i1d,

then the chosen sitefk must be updated simultaneously b
fk85fk2d. This procedure is carried out for all the site
which completes a sweep; the next sweep then starts a
from f1 . In order to have a Markov chain which converg
to the equilibrium state, one requires that the process be
godic and that the detailed balance condition be satis
~i.e., the detailed balance condition is a sufficient but no
necessary condition to converge to the equilibrium state!. In
the hybrid Monte Carlo algorithm ergodicity is built into th
algorithm by performing Langevin updating for some num
ber of times~say N9!. Here we choseN9 to be 3. The de-
tailed balance condition is satisfied through a Metropolis te
That is, after a complete sweep the new configuration~de-
notedC8! is accepted with probability

p5min$1,e2H@C8#/e2H@C#%,

where H is the hybrid Monte Carlo Hamiltonian. It is no
difficult to see that, in general, imposing the constraint do
not prevent us from constructing a suitable Markov chain

The advantage of this method over the VSM is that o
does not need to run a Monte Carlo routine several tim
with different sources, and no curve fitting is required. O
disadvantage of this method is that for calculation of t
renormalized coupling one needs to add and subtract m
average terms as has been shown in the Appendix. Altho
the statistical errors might be small for each term, the ove
errors contributing to the renormalized coupling can be lar
However, the renormalized mass in the symmetric phas
the lf4 theory obtained using this method is very accura

We also would like to comment on Fig. 2. It has be
shown by a very general argument thatU9(f̄)>0 for all f̄

@4# ~primes denote differentiation with respect tof̄!. This
general property is known as the ‘‘ convexity’’ of the effe
tive potential. Looking at Fig. 2 it is clear that this conditio
is violated forŨ(f̄). This can be understood by noting th
convexity holds only in the thermodynamical limit, i.e.,N2

→`.
To conclude this section it should also be mentioned t

the proper vertex functions can be obtained directly using
standard Monte Carlo method. For example, for thelf4

four-point vertex function one obtains

G̃c
~4!~0!52

^f̃4&c23^f̃2&c
2

^f̃2&c

. ~45!

Here, for example,̂ f̃4&c is the connected part of vacuum
expectation value of fourth power of the Fourier transform
the field at zero momentum. As we will show, in the we
coupling regime this method suffers from very noisy sign
giving rise to large statistical errors. The errors are due to
large fluctuations of correlation functions in this regime
well as the subtraction of the disconnected pieces. Howe
in the strong coupling regime this method gives a relativ
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good approximation forG̃c
(4)(0) and the statistical errors ar

reasonably small@14#. However, the higher-order verte
functions calculated with this approach can be very no
even in the strong coupling regime, primarily due to subtr
tions of noisy disconnected pieces.

V. THE NUMERICAL RESULTS

In this section we present our results for the calculation
renormalized couplingl r in two dimensions. It includes the
symmetric and broken symmetry sector in the weak coup
regime as well as the strong coupling regime. In the cas
the weak coupling regime the results are compared with t
loop results and the direct calculation ofl r using the stan-
dard MC method in Eq.~45!. In the strong coupling regime
we also compared the results of each method with the str
coupling expansion results. The details of the numer
simulation are included at the end of this article.

A. Case 1: The symmetric sector
in the weak coupling regime„WCR…

1. The variation of the source method

Here we study the model in the symmetric sector wh
^f&50. As we will see, all methods presented in this pa
require the calculation of renormalized massm̂r , and the
wave function renormalization constantZ. In general, the
boson propagator extracted from the lattice has the form

G̃~ k̂!5
Z

k̂21m̂r
2~ k̂2!

, ~46!

where m̂r[m̂r(m̂r
2) is the mass pole of the scalar particl

i.e., the renormalized mass. In particular at zero momen

G̃~ k̂50!5
Z

m̂r
2

, ~47!

where we make the standard approximation thatm̂r
2'm̂r

2(0).

The renormalized massm̂r is then given as the reciprocal o
ĵ, the lattice correlation length

ĵ25
1

m̂r
2

5
1

G̃~ k̂!

dG̃~ k̂!

dk̂2
U

k̂50

. ~48!

Taking into account the translational invariance of the cor
lation functions, one can choose to approximate the mom
tum derivative in Eq.~48! by the variation ofG̃( k̂) across
one lattice spacing and in one direction to obtain

ĵ25
N

2p F ^g2&c2^a2&c2^b2&c

^a2&c1^b2&c
G , ~49!

with

a5 (
n51

N

(
m51

N

fn,mcosF2p

N S n2
N

2 D G ,
y
-

f

g
of
-

ng
l

e
r

m

-
n-

b5 (
n51

N

(
m51

N

fn,msinH F2p

N S n2
N

2 D G J ,

g5 (
n51

N

(
m51

N

fn,m , ~50!

where heren,m label the temporal and spatial coordinat
for the fieldf, respectively.

There are two different ways of calculatingZ. One is to
use Eq.~47! and the fact thatG̃(0)5N2^f̃2& to calculateZ.
The second way of calculatingZ comes from combining
Eqs.~47! and ~27! which gives

d2U~f̄!

df̄2
U

f̄5^f&

5
1

G̃~0!
. ~51!

Thus G̃(0) can be directly calculated from the fit and th
calculation ofZ follows as before. An accurate calculation
m̂r is crucial for both methods. We found that in the we
coupling regime, the second method was more precise.
compared our results with the two-loop lattice perturbat
theory calculations~LPT! of the renormalized parameter
This means that finite size effects may be present in
comparisons at some level. The comparison is shown in
3. The values forl r seem to be accurate even in the ve
weak coupling regime. In this regime the effective potent
results are in good agreement with the lattice perturba
calculations. The MC results begin to deviate from the p
turbative calculations asl̂ r increases. This is expected sinc
a loop expansion inlf4 theory is an expansion inl̂ r and as
this is increased the contribution from higher loops becom
more significant.

The VMS can be expensive in CPU time but the cost c
be reduced to some extent. For a value ofJ it is possible to
calculateDn(f)[df̂J

n/dnJ5N2^f̃n&c during the calculation
of fJ , for each value ofJ. From these derivatives one ca
expandf̄J aroundJ and then use a curve fitting routine t
calculatel r , as we did before. The statistical errors c
become larger for the higher derivatives because of the s
traction of the disconnected pieces ofDn(f). In Table I we
have shown a comparison of our previous results forf̄J and
results obtained by expansion around threeJ values, namely,

FIG. 3. Plot ofl̂ r versusl̂ in the symmetric sector using lattic
perturbation theory~solid line! and Eq.~45! ~stars! and the VSM

~diamonds! with m̂250.1 andN520.
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J50.075,0.25,0.4 form̂250.1, l̂50.1. We see that the ca
culated values off̄ are reasonably close to the previous
sults. However, the price for reduced computational time
slight increase in uncertainties.

We have also calculatedl̂ r for l̂50.055,m̂250.1 using
Eq. ~45! and the result is included in Fig. 3. The statistic
errors are extremely large and it suggests that the calcula
of the four-point vertex function in this region is impractic
with this method.

2. The constraint effective potential method I

This method is the easiest to implement. We generated
Boltzmann ensemble of independent configurations. For
ery configuration we measuredf̄5(1/N2)( if i and com-
puted the histograms for the probability densityP(f̄) for
several values ofJ. We also noticed that the ansatz of E
~39! only worked well for very smallJ in this region. We did
a simultaneous fit to Eq.~36! of a few histograms corre
sponding toJ50 and smallJ’s using a three-parameter an
satz forŨ(f̄) of the form

Ũ~f̄ !5a1f̄ 21a2f̄41a3f̄6. ~52!

Although there was no systematic discrepancy between
data and the fit, the statistical errors were very large.
unsuccessfully tried more histograms and higher power
f̄ in the fit. The statistical errors remained large and
concluded that even a reasonable estimate of renorma
parameters in this region was not feasible with this meth

3. The constraint effective potential method II

In this method Eqs.~A4! and~A8! can be used for calcu
lations of m̂r and l̂ r , respectively. All averages shown i

TABLE I. Comparison of the calculations off̄J for different

values ofJ’s and perturbative calculations off̄J aroundJ50.1,

J50.225, andJ50.425 withm̂250.1, l̂50.055, andN520.

J f̄J
Error @f̄J#per

Error

0.050 0.4052 0.0032 0.409 0.0057
0.075 0.5841 0.0031 0.5880 0.0052
0.100 0.7648 0.0031 0.7648 0.0031
0.125 0.9253 0.0027 0.9320 0.0042
0.150 1.0840 0.0027 1.095 0.0048
0.175 1.2112 0.0027 1.218 0.0047
0.200 1.3399 0.0027 1.4510 0.0039
0.225 1.4505 0.0026 1.4505 0.0026
0.250 1.5590 0.0026 1.5646 0.0038
0.275 1.6659 0.0026 1.6680 0.0043
0.300 1.7620 0.0026 1.7720 0.0049
0.325 1.8564 0.0026 1.8706 0.0048
0.350 1.9411 0.0026 1.945 0.0038
0.375 2.0166 0.0026 2.0209 0.0033
0.400 2.0963 0.0026 2.0963 0.0026
0.425 2.1704 0.0026 2.1714 0.0029
0.450 2.2430 0.0026 2.2470 0.0029
-
a

l
on

he
v-

he
e
of
e
ed
.

these equations are to be taken with the constraint off̄50.
Although the statistical errors for each term are small,
overall error can be large. However, in the symmetric cas
the weak coupling regime most of the terms either vanish
f̄50 or are small enough to be neglected. For example,
m̂r only three terms need to be considered. But the com
tation of l̂ r suffers from larger cumulative errors.

The field wave function renormalization constantZ can
be calculated in two different ways. One can use Eq.~47!

and relationG̃(0)5N2^f̃ 2&, as in the previous case, or on
can use Eq.~47! and Eq.~51! where@d2U(f̄)/df̄ 2#uf̄5^f&
can be found from Eq.~A4!.

The results are compared with the VSM results and
shown in Table II. We also compared the calculation
renormalized mass using Eq.~49! with the CEP II calcula-
tions in Table III. The comparison indicates that in this se
tor the CEP II method can provide an accurate calculation
the renormalized vertex functions.

B. Case 2: The broken symmetry sector

In this section we consider the calculation of the ren
malized mass and renormalized coupling in the broken s

TABLE II. Comparison of the calculations ofl̂ r using the VSM
and the CEP II in the symmetric sector and weak coupling regi

l̂ r
consdenotes the renormalized coupling calculated by CEP II. H

m̂250.1 andN520.

l̂ l̂ r
s Error l̂ r

cons Error

0.02 0.0191 0.0003 0.018 0.0007
0.04 0.0386 0.0003 0.0363 0.0008
0.055 0.0518 0.0008 0.0510 0.0017
0.07 0.0670 0.0009 0.0657 0.0019
0.1 0.0891 0.0008 0.092 0.0016
0.13 0.112 0.0013 0.121 0.004
0.19 0.165 0.002 0.175 0.0061
0.24 0.216 0.0023 0.22 0.007
0.35 0.313 0.0035 0.321 0.018

TABLE III. Comparison of the calculations ofm̂r
2 using the

VSM and the CEP II in the symmetric sector and weak coupl

regime.l̂ r
cons denotes the renormalized mass calculated by CEP

Herem̂250.1 andN520.

l̂ m̂r
Error m̂r

cons Error

0.02 0.324 0.001 0.323 0.007
0.04 0.334 0.002 0.330 0.007
0.055 0.340 0.0008 0.332 0.008
0.07 0.343 0.0014 0.339 0.006
0.1 0.345 0.0023 0.347 0.008
0.13 0.350 0.0023 0.357 0.009
0.19 0.375 0.0025 0.372 0.009
0.24 0.398 0.003 0.384 0.010
0.3 0.408 0.003 0.399 0.009
0.35 0.421 0.0035 0.410 0.010
0.40 0.433 0.004 0.428 0.010
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6148 57A. ARDEKANI AND A. G. WILLIAMS
tor, ^f&Þ0, in the weak coupling regime. The VSM proc
dure is exactly the same as for the symmetric sector.
fixed m̂2520.1 and 0,l̂<0.17 we calculatedm̂r and l̂ r

for different values ofl̂. The error onG̃(0) is larger than
the symmetric case due to the subtraction of the disconne
pieces. Thus we used Eq.~51! to calculateG̃(0) and subse-
quently extractedZ as previously discussed.

In order to calculate the renormalized quantities using
tice perturbation theory we followed the standard appro
to treating the broken sector. That is, in the bare Lagrang
we shifted the field by its vacuum expectation value~n!,
which can be easily calculated using MC methods, such

x~x![f~x!2n. ~53!

After this translation the mean value of the shifted field,^x&,
vanishes and the perturbative calculation proceeds in
standard manner, keeping in mind that a nonsymmetricx3

interaction has been generated. In lattice perturbation the
one then needs to also consider vertex functions with a th
point interaction. Note thatn can be different from the clas

sical value of the vacuum,ncl5A26m̂2/l̂. As an example,
for m̂2520.1 andl̂50.1 we findn52.18160.002, which
is to be compared withncl52.449.

The comparison between the two-loop results and the
sults from the VSM method is shown in Fig. 4. In applyin
the CEP II method to the broken symmetry sector, evalua
of all the terms in Eq.~A8! is necessary. This renders th
method impractical. As one might expect from the symm
ric sector results the calculation of the renormalized para
eters using CEP I also suffers from large noise difficult
and the signal could not be recovered.

C. Case 3: Strong coupling regime

In a weak coupling expansion the interactive term
pulled out of the path integral representation of the partit
function as a functional operator. That is

Z@ Ĵ#5expF l̂

4!
(

n

d4

d Ĵn
4G E @df#expF2(

n,m

1

2
~fn2fn,m!2

1
1

2
m̂2fn

21 ĴnfnG . ~54!

FIG. 4. The plot ofl̂ r versusl̂ in the broken symmetry sectorl̂
using lattice perturbation theory~solid line! and VSM ~diamonds!

with m̂2520.1 andN520.
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The remaining functional is Gaussian and can be done
actly. The partition function can then be written in terms o
power series ofl̂ and the standard perturbation theory fo
lows.

The strong coupling expansion was first proposed by
authors of Ref.@15#. For this expansion, unlike the wea
coupling expansion, the kinetic and the mass terms
pulled out of the path integral as a functional operator. T
is

Z@ Ĵ#5expF(
m,n

d

d Ĵn

G21~n,m!
d

d Ĵm
GZ0@ Ĵ#, ~55!

where

Z0@ Ĵ#5E @df#expF(
n

l̂

4!
fn

41 ĴnfnG . ~56!

The remaining functional integral is not Gaussian but can
evaluated as a product of ordinary functions on the lattic

Z0@ Ĵ#5N )
n

F~x!

F~0!
, ~57!

where

F~x![E dze2@~ l̂/4! !z41xz# ~58!

andN is a constant. The functionF(x) is a transcendenta
function and can be expanded as a power series inx,

F~x!5
1

A~2!
(
n50

`
2nx2n

~2n!!
GS n

2
1

1

4D . ~59!

Using this series expansion one can easily expand both te
in the right-hand side of Eq.~55! to obtain a power series
expansion forZ@J# which assumes the general form

Z@ Ĵ#5N8F11 (
k51

`

l̂2k/2Ak@ Ĵ#G , ~60!

whereAk@ Ĵ# are integrals over the source functionJ. Thus
the strong coupling expansion is an expansion in powers
l̂2k/2. Benderet al. @15,16# obtained a series expansion for
quantity that we denote here bygR , wheregR[l̂ r /m̂r

42d .
This expansion has the form

gR5y2d/2(
l 50

L

(
n50

N

anlx
nyl , ~61!

where

x5y2d/2
m̂r

2

l̂ r

and y5 ĵ25
1

m̂r

. ~62!

For fixedx one has
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gR5y2d/2(
l 50

L

al
~N!~x!yl , ~63!

where

al
~N!~x!5 (

n50

N

alnxn. ~64!

This series does not converge for large correlation leng
Thus the authors of Ref.@16# proposed a scheme to extrap
late the expression forl̂ r to largey assuming thatl̂ r remains
finite in the limit y→0.

Raising Eq.~61! to the power of 2L/d and expanding to
orderL we find

gR
2L/d5y2LS (

l 50

L

al
~N!~x!yl D 2L/d

[y2L(
l 50

L

bl
~N!~x!yl .

~65!

We then find

gR5y2d/2S (
l 50

L

bl~x!yl D ~d/2L !

, ~66!

which is equivalent to Eq.~61! for small y and approaches
@bL

N(x)#d/2l in the limit y→`. In this manner the authors o
Ref. @17# obtained an analytical series for Eq.~66!. Since the
interesting physics lies in a regime where the correlat
length is large, we performed our calculation in this regim
Thus the above extrapolation scheme was necessary.

We chose a moderate correlation lengthj53.6 by an ap-
propriate tuning of the bare parameters. This can be don
fixing l̂ and choosingm̂ to be in the symmetric region. A
one decreasesm̂, one gets closer to the critical line and th
correlation length increases. Using this, one can reach
required correlation length.

To apply VSM we followed the same procedure as befo
For six different l̂ ’s and fixed correlation length
j53.6(74%), wecalculated the values off̄J for different
values ofJ. The curve fitting procedure was carried out
the same way as for the previous cases. We noticed th
this regime the inclusion of largerfJ’s can change the be
havior of the fit at smallfJ , the region which is of mos
interest to us. The problem arises due to the curve fitt
procedure. In the weak coupling regime, the data points c
to f̄50 have much larger weighting than the one far aw
from this point. Thus calculating the derivatives ofU(f̄) at
f̄50 seems to be reliable. However, in the strong coupl
regime, the data points that are far away fromf̄50 have
much higher weighting and even a small fluctuation mig
affect the calculatedJ(f̄) considerably.

We improved the results by imposing the condition in E
~51!, that is to fixing the coefficienta151/Ĝ(0) wherea1 is
defined in Eq.~52! and G̃(0)5N2^f̃2&. This improved the
results and the inclusion of largerfJ’s did not affect the
results significantly~up to 3%!.

Next we calculated the renormalized parameters us
CEP I. Unlike the previous cases the errors in the res
s.

n
.

by

he

.

in

g
se

t

.

g
ts

were reasonable. For the extraction of renormalized par
eters we only used two histograms corresponding toJ50
andJ50.005. In the weak coupling regime where the ma
term is dominant, one needs to sample the higher valuesf̄

in order to improve the calculation ofl̂ r . Thus in the strong
coupling regime there might not be a need for additio
histograms. From the VSM results one might expect t
sampling very highf̄ might have a similar problem. This
was confirmed from our data for this particular case.

We also calculated the renormalized coupling using E
~45!. Unlike the weak coupling regime, uncertainties in t
results in this region were reasonable. All the results in
strong coupling regime are shown in Figs. 5 and 6. In th
figures we plotgR5l̂ r /m̂r

2 as a function ofb, where we

have defined for convenienceb[l̂/(l̂1100). Asl̂→` we
haveb→1, which is the strong coupling limit. They wer
also compared with the strong coupling expansion resu
They all seem to be in agreement with each other wit
errors. This indicates that as the coupling increases the
results approach the strong coupling expansion results. In
strong coupling expansion, the value ofgR with j53.6 ap-
proaches 14.8870.04 asb→1. This value depends on th
correlation length. In order to apply the CEP II method, the
are numerous terms in Eq.~A8! which have to be evaluate

FIG. 5. The plot ofgR5l̂ r /m̂r
2 versusb[l̂/(l̂1100) with

strong coupling expansion results~solid line!, using Eq.~45! ~stars!

and the VSM results~diamonds! with m̂r
250.078(64%) and

N520.

FIG. 6. The plot ofgR5l̂ r /m̂r
2 versusb[l̂/(l̂1100) with

strong coupling expansion results~solid line!, using Eq.~45! ~stars!

and the CP II method results~diamonds! with m̂r
250.078(64%)

andN520.
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6150 57A. ARDEKANI AND A. G. WILLIAMS
and consequently the accumulated errors can be very la
However, we found that as before the renormalized mass
be calculated accurately.

D. Details of the simulations

In our MC calculation we chose the hybrid MC algorithm
In a run we have taken a number of decorrelation MC ite
tions between two measurements. All the calculations w
done on a 202 lattice and the rate of acceptance was k
between 40% and 60%. In all cases~except the broken sec
tor! the calculations of renormalized mass andG̃(0) ~where
it was needed! and the direct calculation ofG̃c

(4)(0) were
done using 6800 uncorrelated samples with 50 000 therm
ization configurations. In the broken sector we used 11
uncorrelated samples with the same thermalization confi
rations. The reason for the increase was to obtain better
tistics, since the measured quantities have larger errors d
the non-vanishing disconnected pieces. In applying the V
to the symmetric case~and in the weak coupling regime!, we
calculatedf̄ with 0.025<J<0.425. We noticed that the nec
essary number of decorrelation iterations in the presenc
nonzeroJ was smaller than for theJ50 case. The calcula
tions were carried out using 2500 decorrelated configu
tions. We took the number of thermalization configuratio
to be 10 000. In the broken symmetry sector we increa
the number of uncorrelated configurations to 3200. In
strong coupling regime only the range of the values forJ was
different ~as mentioned in the preceding section!. For CEP II
we used 5000 uncorrelated configurations with 50 000 th
malization iterations. In construction of the probability di
tribution histograms, we used 750 000 configurations. T
curve fits were done using a standardx2 fitting algorithm
where the uncertainties on the parameters were obta
from the diagonal of the covariant matrix. For the stro
coupling results we also estimated the systematic error du
the fact thatẑ was fixed to be approximately 4% by varyin
the fixed value within reasonable limits.

VI. CONCLUSIONS

We have studied the calculation of the effective poten
for lf111

4 theory using three different methods: the var
tion of source method and two constraint effective poten
methods~CEP I and CEP II!. Using our method, referred t
as CEP II, we showed how to calculate the vertex funct
using the correlation functions in the presence of a c
straint. We calculated the effective potential in the symm
ric and the broken sector in the weak coupling regime as w
as in the symmetric sector in the strong coupling regime. T
renormalized quantitiesl̂ r andm̂r were then obtained from
the effective potential for each case. In the weak coupl
regime we compared our results with lattice perturbat
theory. We found that in the symmetric case both VSM a
CEP II can give accurate results, whereas the CEP I me
and the direct Monte Carlo calculation of the~two- and four-
point! vertex functions failed to do so. We also found that
the broken symmetry sector VSM is the most practical a
accurate of these methods. We also studied the model in
strong coupling regime and the results were compared w
the strong coupling expansion results. In this regime
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found that CEP I, VSM, and the results from the dire
Monte Carlo calculation of the vertex functions were cons
tent with each other and with the strong coupling expans
results. In summary then, we have shown that Monte Ca
effective potential methods can be accurate and reliable t
for calculating physical quantities for scalar field theorie
but that one should use the method of evaluating the ef
tive potential and its derivatives which is best suited to
regime of interest.

APPENDIX

The differential equations relating the constraint effect
potential and the classical potential follow.

For the first derivative we have

dU~f̄!

df̄
5K dV~f!

df
L

f̄

, ~A1!

which for lf4 theory becomes

dU~f̄!

df̄
5m2f̄1

l

6
^f3&. ~A2!

The second derivative is given by

d2U~f̄!

df̄2
5K d2V~f1!

df1
2 L

f̄

2(
i 51

Nd K dV~f1!

df1

dV~f i !

df i
L

f̄

1NdS K dV~f1!

df
L

f̄
D 2

, ~A3!

which for lf4 theory becomes

d2U~f̄!

d2f̄
5m21

l

2
^f2&

1NdFl2

36
^f3&21

lm2

3
f̄^f3&1m4f̄2G

2NdFm4^ff̃&1
lm2

6
^f3f̃&1

l2

36
^f3f̃3&

1
lm2

6
^ff̃3&G . ~A4!

The third derivative gives

d3U~f̄!

df̄3
5Nd

d2U~f̄!

df̄2

dU~f̄!

df̄
12NdS dU~f̄!

df̄
D 2

2N2dS dU~f̄!

df̄
D 3

1K d3V~f1!

df1
3 L

f̄

1••• ,

~A5!

which for lf4 theory becomes
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d3U~f̄ !

df̄3
5m̂2

l̂

6
^f3&2Nd

l̂

6
^f2f̃3&2Ndl̂^f2f̃&

1@O~ l̂2! terms#1@O~m̂2! terms#

1@ terms that vanish atf̄50#1••• .
~A6!

Finally, for the fourth derivative we obtain
l.
d4U~f̄ !

df̄4
5NdS d2U~f̄ !

df̄2
D 2

24N2d
d2U~f̄ !

df̄2
S dU~f̄ !

df̄
D 2

1K d4V~f1!

df1
L

f̄

1••• , ~A7!

which for lf4 theory gives

d4U~f̄ !

df̄4
5l̂2lm̂22Ndlm̂2^f̃2&2Ndl̂m̂2^f2&

1@O~l2! terms#1@O~m̂4! terms#

1@ terms that vanish atf̄50#. ~A8!
B

ield

ys.
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